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ABSTRACT
Biometric modalities can be used to improve security, safety and
comfort in different applications. For example it is possible to
restrict access to computer systems or buildings by biometric
authentication. Since the usage of biometric modalities is considered
more and more also for vehicles, in this paper we review two
existing approaches of fusing speech, face and additional biometric
modalities in automotive applications. We also combine them to an
extended concept for an improvement of the achievable comfort and
security. Especially we include additional soft biometric modalities
to compensate failures of the biometric sensors to ensure business
continuity through enhanced availability. However, enhancements of
the comfort of biometric authentication systems on one side, often
lead to a decrease of their security on the other. In a first theoretical
simulation we show the overall comfort improvement, compare the
new concept with the selected two existing approaches and discuss
potential security implications.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
security and protection – Authentication.

General Terms
Measurement, Performance, Design, Reliability, Experimentation,
Security, Human Factors, Theory, Verification.
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automotive, biometric modalities, characteristics fusion, speech, face
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1. INTRODUCTION
A lot of different biometric characteristics can be used to identify or
verify a person, for example fingerprints, voice or face [1]. Different
biometric modalities give degrees of different discriminatory power.
Therefore, they are often combined into multi-modal systems to
achieve a possibly enhanced authentication performance. Thereby
different fusion strategies exist. For instance it is possible to
combine the respective features that are extracted from the data like
an image or audio signals. Another alternative is the fusion of the
resulting matching scores (MS) [2]. Most of the MS-fusion
approaches use weights to merge the different scores, e.g. by
summing up the weighted scores. The weights might for example be
determined by the Equal Error Rates (EER) of each single uni-
modal subsystem [3], which is a possible property to characterize a
biometric authentication system (defined by the intersection of the
False Acceptance Rate/FAR and False Rejection Rate/FRR [4]).

To use the efforts of multi-modal biometric authentication systems
also in the car, the special requirements in the automotive domain
have to be respected. Unlike in stationary setups, in this
environment the quality of the collected biometric data especially
depends on factors like the environment conditions (e.g. light or
noise levels) or the state of the sensor (e.g. due to mechanical shocks
or dirty sensors). To also include such influences we propose to
collect and evaluate respective data. Even existing sensor
information like light levels, microphone input or window positions
could support the adaptive calculation of the fused matching score
(also see [5]). To evaluate the current quality of a given sensor, its
input could be checked against templates from earlier enrollments
(this implies that the templates would probably have to be stored as
raw data). We described another method in [6] that uses additional
sensors to determine the current environment conditions (see Figure
1.1 and 2.1). For example a camera takes images in different
qualities at daytime than at night. By an additional light sensor it is
then possible to include partial information to estimate the quality of
the captured images, depending on the illumination situation.

In this paper we focus on the application of biometric modalities in
the automotive domain. Here, visual and acoustic sensors have been
supported more and more [7] for various safety and convenience
purposes since the past few years.

Beneath biometric authentication these sensors can be used to assist
the driver and higher his/her concentration [8] (e.g. by allowing to



control different systems like the navigation by voice commands,
maximizing the driver’s attention to road and traffic conditions).
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Figure 1.1 Simplified car [6] (translated and enhanced)

Biometric modalities can also be used to address security
requirements like access control issues. In one possible scenario, a
fingerprint sensor might be included in the door handle. The car will
only open, if an authorized person tries to open the door and is
recognized by her/his fingerprint [9]. Other applications could also
be safety related, e.g. to detect if a person is out of position or if a
child’s safety seat is mounted in an unsafe way. In these cases it
might be possible that an airbag, which is mainly used for
protection, could cause additional damage [10 & 11]. Therefore, if
such a situation is detected, the system could deactivate the airbag or
adjust the inflation parameters [10]. Another example is the use in
driver monitoring systems: a camera records the driver and an
algorithm analyzes the movement of the eyelids. As a suspicious
sequence is detected, e.g. due to fatigue, the system can warn the
driver [12].

Although a wide variety of face and speech fusion concepts and
applications exists, we can only refer to a minimum number of
related work approaching the changing environments and special
sensors for the automotive domain. For example, [17] considered
the fusion of multi-modal biometric modalities (like audio and
video) for the application in vehicles, in particular for speaker
identification. Especially in this domain we see a high relevance to
respect the frequently changing environment conditions in a car and
want to focus on adaptive approaches. Previous work on general
environment-adaptive multi-modal biometrics has for example been
presented in [18]. With a special focus on a car and its special
features including numerous, versatile sensory input, we expect a
focus on this to be very effective. Because the existing approaches
neglect the usage of additional soft biometric modalities we propose
the usage of such biometric modalities, as additional, less distinctive
characteristics, that can support the authentication of a person.
Within a car, these might be data indicating personal characteristics.
To identify person relatable characteristics, e.g. the personal manner
of driving, several features or sensor information can be evaluated to
enhance existing multi-modal systems. In this paper we exemplarily
consider an evaluation of the actuation style of pedals (e.g. based on
accelerator or brake pressure) or the steering wheel; also the vehicle
speed could be evaluated (also see [15, 21]). Furthermore beside
additional soft biometric modalities we use the known concept of
Biometric Hashing (see for example [23]) to address the privacy
requirements of biometric reference data.

This paper is structured as follows: In section 2 we give a short
overview of the two aforementioned existing approaches for face
and speech fusion in automotive domain and discuss their
properties. In the third section we develop an improved version that
combines the two existing approaches to enhance the comfort and
security and compare all these strategies. Additionally, in section 3
we introduce Biometric Hashing for privacy enhancement. In
section 4 we summarize this paper and refer to future work. In the
later section we also give a guideline how the usage of additional
soft biometric modalities can enhance availability issues.

2. Existing Approaches
In this section we present two existing approaches on a fusion of
multi-biometric modalities in the automotive domain. We consider a
fusion at the matching score level, which means that the different
biometric input is processed by separate algorithms. For example, a
first algorithm could be used for face analysis, a second one for
speech analysis (e.g. [20]) and a third one might calculate a
matching score depending on the body weight. After giving some
basics of both fusion approaches in the next subsection, we further
introduce the Adaptive Dynamic Fusion (ADF) from [6] in
subsection 2.2 and Simplified Face Speech Fusion (SFSF) from [13]
in subsection 2.3.

Table 2.1 summarizes the identifiers used in the following
subsections.

Table 2.1 Used identifiers and short description

Identifier Description Approach

t discrete point in time

s1 camera

s2 microphone

s3 body weight sensor

s4 light sensor

s5 window position sensor

s6 speed sensor

B1,t lip movement flag at time t

B2,t seat usage flag at time t

Vj,t confidence factor for sj at time t

Wj fixed weight for sj

Nt normalization factor at time t

ADF

MSj,t uni-modal matching score for sj at
time t

MSfus,t resulting matching score at time t

ADF &
SFSF

FAR false acceptance rate

fj known failure through software

dj,t disturbance factor at time t

gj,t dynamically adapted weight at time t

wj,t normalized weight at time t

SFSF

2.1 Basics on Both Chosen Approaches
Since the fusion of different biometric modalities has already been
proven to be effective in other applications (see for example [19]),
we expect it to be also useful in the automotive domain. The
collection of sufficient biometric data in future cars is realistic; some
of them (like voice) are even already being used today. The fusion of
such biometric signals could allow for many new applications, e.g.
to address comfort, safety or security issues. The biometric
modalities for such a fusion that have been selected in [6] are face,
speech and body weight. Therefore it is necessary that the car



provides the required sensor equipment camera, microphone and
body weight sensor, which can partially already be found in today’s
cars.

In the automotive domain, the environment can change very
frequently, e.g. in terms of noise (see [20]) or lighting conditions. It
is not possible to assume a quiet and well illuminated environment
like it is often being done in static setups. Therefore, in the
automotive domain it is important to use a concept that is able to
adapt dynamically to different kinds of disturbances. In [6]
additional
information
was respected
by including
additional
sensors (e.g.
light sensors).
The approach
described in
[13] uses
reference data
instead (like a
standard image
or tone), which
is used to
estimate the
quality of the
current signal
and the
functionality of
the
corresponding
sensor.

2.2 Adapt

ive

Dynamic

Fusion
The original concept for vehicle systems called Adaptive Dynamic
Fusion (ADF) [6] considers three types of biometric modalities for
the automotive domain: face, speech and body weight. Therefore a
camera, microphone and a body weight sensor are used. After the
collection of the respective biometric modalities at time t the input
data is processed by corresponding algorithms like it is common on
various biometric systems. Simplified, first the required features are
extracted. The second step can be a further processing of the
obtained features. Third, a comparison is being done and a matching
score is calculated [14]. The original concept performs the fusion of
the separate matching scores according to Equation 2.2.1. As the
single matching scores are usually defined in the interval [0, 1], a
normalization (2nd line of Equation 2.2.1) is used to obtain a fused
matching score that also matches this interval.

For the discussion of Adaptive Dynamic Fusion (ADF), biometric
authentication of a driver (Figure 2.1), we use definitions as follows,
see also Figure 2.1. t is the time when the data from the sensor si has
been captured. All si signify different sensors i=1...6. They are
assigned as follows: s1 camera, s2 microphone, s3 body weight
sensor, s4 light sensor, s5 window position sensor and s6 speed
sensor. Both Bj, j=1..2 are binary factors, which depend on the
actual conditions of sensors s1 … s6, as outline by the notation Bj,t(s1

... s6) in Equation 2.2.1. They represent flags used to determine if a)

a voice command was spoken (B1,t) and b) a person is sitting on a
seat (B2,t). The Vj,t are confidence factors related to the biometric
sensors s1 to s3 and depend on additional sensors s4 … s6. All Wj are
constant weights that are based on an estimation of the EER of the
related biometric subsystem involved. They are motivated by weight
fusion strategies in [3]. All Vj,t and Wj have to be in the interval [0,
1]. The MSj,t are the already mentioned uni-modal matching scores.
MSfus,t is the resulting score which is used to authenticate the
affected person.

The final matching score MSfus,t becomes zero once one of the Bj,t

operands is set to 0 because of a sensor malfunction. On the one
hand the advantage is that the provided access security is high. On
the other hand the lower comfort might be a disadvantage. Even if
all other sensors are working properly the final matching score will
be zero.
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Equation 2.2.1 Adaptive Dynamic Fusion

If all the Vj,t are set to 1 it is obvious that the sum of Vj,t*Wj is
exactly 1. In this case no normalization is needed as the condition is
already fulfilled. Assuming that only one of the Vj,t is less than 1
(e.g. V1,t due to high illumination), a normalization should be done
(see Table 2.2.1).
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Figure 2.1 Biometric authentication of the driver (translated from [6])



Table 2.2.1 Exemplary normalization of Vj,t*Wj

Modality j:

1 2 3
Vj,t confidence factor 0.7 1.0 1.0
Wj weight 0.5 0.1 0.4
Vj,t*Wj 0.35 0.1 0.4
Nt 1/(0.35 + 0.1 + 0.4) ≈ 1.1765

To fulfill the condition, the normalization factor Nt is calculated.
With the exemplary values of Table 2.2.1, especially the sum of
Vj,t*Wj (0.85), we get an Nt of about 1.1765. Normalization can be
understood as a theoretical alignment of the weights Wj. The ratio
between the weights is not affected. The advantage is clearly visible
if one of the Vj,t is equal to zero while the others remain at a value of
one.

Assuming that the V1,t drops to zero (e.g. due to a rapid change of
the illumination) it is obvious that the final matching score depends
on the remaining V2,t and V3,t. In this case the sum of Vj,t*Wj is 0.5.
Normalization factor Nt is calculated as 1/(1/2) = 2, so all weights
are adjusted by multiplying them by 2.

2.3 Simplified Face Speech Fusion
Beside the approach of ADF from [6], Blaschke et. al. formed a
method to fuse different biometric modalities with respect to the
current performance of the sensors involved. In their work [13] they
also focused on the scenario that a sensor could be damaged or has a
malfunction. The idea is to equip the system with pre-recorded
reference data for all sensors involved (such as microphone or
camera) to compare all samples recorded at runtime with this pre-
recorded reference data. The result is a factor describing the
performance of the corresponding sensor that should be included in
the calculation. This concept is called “Simplified Face Speech
Fusion” (SFSF) within this paper. It is described in the Equation
2.3.1.

In the SFSF the variables are used as follows: MS1,t … MSn,t are the
processed sensor data and represent the matching scores. The failure
that is known through the software is represented by the fi that can
be understood as FAR dependent weights. Values gi,t are weights for
the different biometric modalities, including the prior known failure
fi and also the disturbance variables di,t for all involved biometric
modalities at time t. Weights wi,t are normalized gi,t using Equation
2.3.1.
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Equation 2.3.1 Simplified Face Speech Fusion (SFSF)

2.4 Comparison of the Existing Approaches
On the one hand, the most characteristic difference between both
described approaches is that the first approach ADF uses additional
sensor information to obtain knowledge about the environment

conditions while the second simplified fusion does not use this kind
of input. This additional information in the ADF approach is used to
adapt the calculation by introduced confidence values Vj,t. On the
other hand, ADF does not consider the current functionality of the
according sensor as done in SFSF. For this purpose, the simplified
fusion (SFSF) uses a reference quality measure like a defined tone to
evaluate the current functionality of the corresponding sensor like
the microphone.

Of course the influence of the environment is still included by this
concept, but it cannot be determined explicitly. None of the
mentioned approaches is able to distinguish if a malfunction and/or
unfavorable environment has a bad impact on the results. To address
this, in the next section we propose and discuss a new approach that
combines the efforts of both existing approaches.

3. Enhanced Fusion Concept and Evaluation
In this section we extend the existing Adaptive Dynamic Fusion
approach by the advantage of sensor quality measure of the
simplified fusion concept to a new Enhanced Fusion Strategy (EFS).
Furthermore we include the option that an application can also
modify the provided matching scores and filter relevant information.
We also discuss a method to enhance the privacy of the reference
data by using a biometric hashing method. Additionally, we give a
comparison of achieved results for the four different methods
referring to exemplary sets of input values. These are theoretical
values chosen to simulate the effects of the fusion strategies and
their enhancements. Furthermore we discuss their impact to security,
safety and comfort issues.

For the enhancement of the Adaptive Dynamic Fusion (ADF) we
use the identifiers already introduced in Table 2.1. Additional we
use variables shortly described in Table 3.1.

Table 3.1 Additional identifiers for EFS

Identifier Description

Aj,t weight adjustment operand for
application at time t

Fj,t functionality of the sensor sj at
time t

Bj,t binary operand at time t; to
select/unselect a biometric
modality j in general

CBj compensational biometric
modalities (j=1: steering
properties; j=2: acceleration
behavior; j=3: brake pedal
pressure)

MS_CBj,t matching score of CBj at time t
MBj main biometric modalities (j=1:

face; j=2: voice; j=3: body
weight)

MBUj,t usage of main biometric
modality j at time t

F_CBj,t functionality of CBj at time t
V_CBj,t confidence factor of CBj at time

t

W_CBj weight of CBj

WNt weight normalization at time t



3.1 Enhancement of the Fusion Strategy
Beneath the main biometric modalities which are used in ADF (face,
speech, body weight) we suggest the use of additional hard (strong
discriminatory power) and/or soft biometric modalities (weak
discriminatory power) to increase the comfort and security. To
combine both concepts of ADF and SFSF into a new Enhanced
Fusion Strategy (EFS), new factors Fj,t, similar to the confidence
factors Vj,t are introduced for the functionality of the sensors
involved. To evaluate the suitability of the measured data, the Vj,t

address the environment conditions that are measured through
additional sensors. The functionality factors Fj,t are based on data of
the respective sensor to determine the current quality (state of the
sensor). If, for example, the confidence factor for the microphone is
at its maximum value of 1, this can be understood as the fact that the
system should work properly and the environment is not expected to
have bad influence on the result. But if in such a situation there is a
loud noise in the recorded audio signal even if the environment is
known to be silent, the microphone probably is defective. At this
point we do not take care of the exact way how disturbing signals
from the environment are detected. One solution might be to use
two or more microphones and let control them each other.

Using functionality factors it is possible to give a graduation on how
good a sensor is currently working. Assumed that there is some
reference data for typical functionality it should be possible to detect
abnormal behavior. Different levels of reference samples might be
stored classifying ideal and regular functionality, different kinds of
disturbed functionality as well as absolute failure. This would allow
multiple levels of potential quality classifications.

The second aspect that has been added in this context are additional
compensational biometric modalities (CB). This can also be soft
biometric modalities that have some relation to the driver. For
example, the individual manner of driving can in certain extends be
derived from the input data like temporal behavior in pedal
pressures (e.g. acceleration and braking), steering angles or global
data like vehicle speed (see for example [15; 21]). We now include
such information into our fusion by defining matching scores of
such additional biometric modalities: For every main biometric
matching score MSj,t we define an additional matching score
MS_CBj,t. that compensates the respective main biometric in case it
fails (e.g. due to component failures or difficult environment
conditions). If the sensors s1 … s3 are working at their maximum
functionality and in an optimal environment, the compensational
biometric modalities are not included, but if the functionality of the
main sensors (respectively the confidence regarding the
environment) is decreasing, the CB will be included more and more
in the calculation to compensate for the failures. Therefore Equation
3.1.1 introduces a new factor that describes the main biometric
usage (MBUj,t). We use the product of confidence Vj,t and
functionality Fj,t of the corresponding sensor sj at time t to estimate
the quality of the respective main biometric modality MBj as MBUj,t.
Individually for a given MBj, the amount of the usage of the
respective CBj at time t is defined as 1-MBUj,t.
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For all compensational biometric modalities we also introduce
values for the functionality of the sensor F_CBj,t, the confidence
factor V_CBj,t and the weight W_CBj,t. To avoid false weighting that

leads to an incorrect fused matching score we introduce a different
kind of normalization than described in Equation 2.2.1. The
weightings are still calculated depending on the EER, but an
adjustment is carried out. First the weightings are calculated as in
the ADF strategy separately for the main biometric modalities and
the CB. This way, the weights are already adjusted within the class
of the main and within the compensational biometric modalities. To
also keep the relation between a mixed selection of main and
compensational biometrics, the respective weights are additionally
adapted to be in an appropriate relation to each other. In general, the
CBs have a less discriminatory power and their influence should be
less than those of the main biometric modalities, if they are
included.

Therefore at the calculation of the weights during the adjustment of
the system, the weights of the compensational biometric modalities
are additionally adapted to be in relation to the main biometric
modalities, instead of simple normalization to 1 as performed in
ADF approach. Therefore the weights of the currently used
biometric modalities are summed up and normalized to 1.0.
Equation 3.1.2 shows the calculation of the corresponding factor.
This factor is used in an individual multiplication with the used
weights.
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Equation 3.1.2 Used Weights normalization

Another enhancement of the existing approaches from section 2 is
the additional provision for application related weighting. In the
automotive domain it is useful to group applications and commands
into three different classes. Usually, these classes are not disjoint so
it might be possible that an application could belong to more than
one class. We use three classes: safety, security and comfort
applications. Safety applications are relevant for safety tasks, e.g. to
protect the humans inside of the car. Security applications protect
the car and/or its usage against unauthorized access whereas comfort
applications are related to comfort issues like the calibration of the
air conditioner. In order to give an application the option to adjust
the standard weighting of the different matching scores, new
application dependent operands Aj,t have been introduced that can be
set to any value in [0, 1]. They depend on the respective class of the
command and the additional information about environment and
sensor properties (that is also included in Vj,t and Fj,t). The Aj,t are
dynamically calculated by the application itself to achieve any
application-dependent purposes. They have been added to the inner
part of the sum so that the weighting of a specific biometric
modality can additionally be decreased or increased by the
application. Furthermore the binary operands of the ADF are now
included in the inner part of the sum and are also available for all
possible biometric modalities. This way it is possible that an
application can request the usage of only a subset of biometric
modalities available. The new final fusion concept is shown in
Equation 3.1.3.
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Equation 3.1.3 Enhanced Strategy

3.2 Privacy Enhanced Fusion Strategy (PEFS)
With reference to Figure 1.1 a potential vulnerability of the system
can be identified in the biometric database. If the needed templates
are stored as original data like images or speech samples, a thief
could steal them and misuse them for fake identifications and
verifications, respectively. Additionally, the privacy of the driver
and other enrolled occupants should be protected, e.g. in cases of re-
selling or rental scenarios. Therefore the stored data should not
contain any privacy related information. One possible way to
achieve a privacy enhancement is to store information in a more
compact form. For example, only features might be stored that have
initially been extracted from the chosen biometric modalities.
Another possibility is to store information in form of biometric hash
values. For example, for handwriting there already exists an
approach that makes use of such a biometric hash value [23]. Also
for features obtained from a facial image [24] it is possible to
generate a similar hash value. In the following we use the terms
voice hash, face hash and body weight hash regarding the biometric
modalities voice, face, and body weight that are used to calculate the
biometric hash.

For different persons, the hash values of their feature vectors should
be different in almost every element (intra class sensitivity), even if
their feature vectors only vary in a small number of elements. But
additionally, for the same person (approximately) the same hash
vector should be generated each time (intra class stability). With
such a hash function it is possible to enhance the privacy of the
biometric system. Two different modes could be chosen for the
decision: In one mode (distance mode) the distance between a stored
hash and the hash of the current data is calculated using different
distance measures [3]. The other mode (verification mode) either
retrieves 1 for identical hash codes or 0 for different hash values and
thus requires stable intra-class hash values. As we recommend the
use of a hash method in verification mode, the result of a
comparison is no longer a matching score like we used in Equation
3.1.3. Therefore, instead of the MSj,t the result of the verification
mode (HVj,t) is used and interpreted as a matching score. This
means, if the hash verification yields a result of zero, the priority of
the partial result, due to the environment and sensor conditions, has
no effect on the final result (now HVfus,t instead of MSfus,t). For
example if the environment is optimal, but the person is not in an
optimal position, the verification might lead to a result of 0.

3.3 Comparison of EFS with the existing

approaches
To compare different biometric authentication systems, several tests
and fusion strategies like [16] have been developed and performed.
In this section we perform a comparison of the ADF concept, the
SFSF strategy and our new approaches EFS and PEFS. Since
(unlike [16]) we do not yet have real data for our tests, we perform
the comparison within a simulation using theoretical values. This
way we show how the approaches react on several input
combinations in different situations. We show how the comfort and

security are affected. This is not a complete list of possible situations
but we use some extreme choices that illustrate the general
differences.

First we discuss three different scenarios that affect the mentioned
aspects safety, security and comfort. They also show, that the
inclusion of additional information about environment and sensor
properties could lead to an improvement of some of these aspects.

Scenario 1 – Comfort and Safety related

In this scenario a speech command is used to adjust the seat for
general comfort purposes by ensuring the safety of the car and its
occupants at the same time. For example if the driver has to use the
brake pedal, a seat movement could hinder him to do it with an
appropriate pressure which might lead to an accident that could have
been prevented otherwise. Therefore the safety is affected since
people can get injured and material can get damaged by a seat
movement in an inappropriate situation.

Scenario 2 – Comfort and Security related

The second scenario is the voice-operated multimedia system.
Different classes of movies exists e.g. child (level 0), teen (level 1)
and adult (level 2). All occupants registered in the biometric system
of the car also belong to one class and are only able to start movies
of their own or a lower class level. By using voice commands it is
comfortable to control the system, but also the security is affected. If
a person cannot be recognized well enough, only movies of the
lowest level are unlocked.

Scenario 3 – Security related

Third, the following scenario concerns security. Imagine a thief that
forges different sensors in a car to get access to the internal systems
in order to unlock the car and be able to drive. When the owner
recognizes the loss of his car, he could send additional information
to it, e.g. by using future GSM communication infrastructure. With
this additional knowledge the system is able to lock all comfort
systems so it might only grant a minimum amount of functionality in
a restricted state. This might be necessary because even the current
driver (who is probably the thief), should be able to guide and stop
the car safely without endangering other occupants or bystanders.
For instance it might be possible to limit the driving speed to 6 mph
like it is considered in [22].

In the mentioned scenarios both ADF and SFSF do not take care of
the situation. They neither take care of the possibly dangerous
situation of scenario 1 nor of the additional information provided in
scenario 2 and 3. The EFS now is able to include the mentioned
parameters and adaptively adjust the impact of the matching score of
a biometric characteristic on the overall decision.

Among other analyses, during the following comparison we show
how the new approach solves the problem mentioned in section 2.
Our simulation will start in a basic scenario assuming that
everything is fine and all sensors are working normally. The
environment is in a state where it does not have negative effects on
the sensors. Table 3.3.1 shows these basic sensor data assumed and
the initial additional factors for a discrete time t=0. As mentioned
before, the comparison is based on a simulated evaluation and does
not rely on real data. We define a matching score MS of 1.0 as a full
match, i.e. the best value that the employed biometric subsystem or
the fusion can provide. Further we imply that the body weight is a
biometric modality that has a less discriminatory power. Thus, the
MS for camera and microphone can be expected to be more precise
than the one for the body weight sensor. Also the selected MS



weights will be different for the different biometric modalities
involved. For a better comparison, the application operands Aj,t are
set to 1 because these operands do not have an influence on the
ADF and SFSF concepts. Additionally, for SFSF we assume a FAR
of 0.1 for the biometric subsystems depending on camera and
microphone (i.e. 10% of the attackers are accepted falsely while
90% are rejected correctly). The subsystem depending on the weight
is assumed to have a FAR of 0.7 (i.e. 30% of the attackers will be
rejected correctly).

Table 3.3.1 Basic Assumption: Simulation Data

Sensor cam micro body weight

MSj,0 matching score 0.9 0.7 0.4

HVj,0 verification hash code 1 1 0

Vj,0 confidence factor 1 1 1 sum: 3

Wj weight 0.5 0.36 0.14 sum: 1

B(ADF)j,0 binary operator 1 n/a 1

B(EFS)j,0 binary operator 1 1 1

Aj,0 application operand 1 1 1

Fj,0 functionality factor 1 1 1

FARj selected false

acceptance rate

0.1 0.1 0.7

Compensational

Sensor

steering

properties

sensors

acceleration

behavior

sensors

brake pedal

MS_CBj,0 matching score

compensational biometric

modalities

0.3 0.1 0.2

HV_CBj,0 verification

hash code compensational

biometric modalities

1 0 0

V_CBj,0 confidence factor

compensational biometric

modalities

1 1 1 sum: 3

W_CBj adjusted weight

compensational biometric

modalities

0.11 0.11 0.11 sum:
0.33

F_CBj,0 functionality factor

compensational biometric

modalities

1 1 1

As Table 3.3.2 shows, no normalization has to be done for the
Adaptive Dynamic Fusion (ADF), because either the sum of all
Vj,0*Wj is 1 or, respectively, the sum of the Vj,0 is 3, which depends
on the respective normalization function. In this case, the calculated
fused matching score is simply the sum of the products of the initial
matching scores and the corresponding weights for each individual
modality involved.

Table 3.3.2 Basic Assumption: ADF Results

Sensor cam micro body

weight

Vj,0*Wj 0.5 0.36 0.14 sum: 1

N(ADF)j,0 normalization factor 1

MSfus,0 fused matching score 0.45 0.252 0.056 sum: 0.758

The additional data and results for the Simplified Face Speech
Fusion (SFSF) are shown in Table 3.3.3.

Table 3.3.3 Basic Assumption: SFSF Results

Sensor cam micro body

weight

fj through software known

failure

0.9 0.9 0.3

dj,0=Fj,0 current

disturbance

1 1 1

gj,0 unnormalized weights 0.9 0.9 0.3 sum: 2.1

wj,0 normalized weights 0.429 0.429 0.143 sum: 1.001

MSfus,0 fused matching

score

0.3861 0.3003 0.0527 sum: 0.7391

As it can be seen, the fused matching score is nearly the same than
the one from ADF concept.

Table 3.3.4 shows the resulting matching score of the Enhanced
Fusion Strategy (EFS) and the Privacy Enhanced Fusion Strategy
(PEFS).

Table 3.3.4 Basic Assumption: EFS and PEFS Results

Sensor cam micro body weight

MBU0 main biometric usage 1

WN0 used weights normalization 1

MSfus,0 fused matching score 0.45 0.252 0.056 sum:
0.758

HVfus,0 fused verification hash code 0.5 0.36 0 sum:
0.86

ADF and EFS give the same fused matching score because the Bj,0

in Adaptive Dynamic Fusion, the corresponding Fj,0 in the
Enhanced Fusion Strategy as well as the corresponding Vj,0 are 1.
Simplified, the resulting MSfus,0 therefore equals the sum of the
weighted input matching scores. The different calculated score of
the Simplified Face Speech Fusion is caused by the additional use of
the FAR and the different kind of the calculation of the weights. The
results are still similar. The best result is given by the PEFS but in
our theoretical example it is heavily dependent on the biometric
modalities that are used and their respective weights. If the HV is 0
for the cam and 1 for the body weight, the result is the sum of the
lowest two weights, which is 0.5. The results of the other strategies
are not affected, so PEFS give the lowest result in that case.

Now we show what happens if one of the binary operators for ADF,
Bj,0 is set to zero (e.g. B1,0 because of a camera malfunction).
Accordingly, we also set the corresponding values for the concepts
SFSF (d1,0) and EFS/PEFS (F1,0) to this value. All other parameters
are the same as in Table 3.3.1.

Obviously, as mentioned in section 2, the fused matching score for
ADF will be zero because it is a product of factors one of which is
zero. Table 3.3.5 and 3.3.6 show how this affects the Simplified
Face Speech Fusion and the enhanced concepts.

Table 3.3.5 Modified Assumption (Failure of First Main

Biometric): SFSF Results

Sensor cam micro body

weight

dj,0=Fj,0 current disturbance 0 1 1

gj,0 unnormalized weights 0 0.9 0.3 sum: 1.2

wj,0 normalized weights 0 0.75 0.25 sum: 1.0

MSfus,0 fused matching scores 0 0.525 0.1 sum: 0.625



The matching score MS1,0 of the malfunctioning sensor becomes
zero and only the two other matching scores are included in the
fusion and the resulting fused matching score MSfus,0. The weights
corresponding to the two properly working sensors are adjusted.
They are increased but their ratio is not changed. Therefore, a lower
result can be expected compared to Table 3.3.3.

Table 3.3.6 Modified Assumption (Failure of First Main

Biometric): EFS and PEFS Results

Sensor cam micro body

weight

MBUj,0 main biometric usage 0 1 1

1-MBUj,0 compensational biometric

usage

1 0 0

WN0 used weights normalization 1.639

MSfus,0 fused matching score 0.054 0.413 0.092 sum: 0.559

HVfus,0 fused verification hash code 0.18 0.59 0 sum: 0.77

The fused matching score for EFS and the fused verification hash code
for PEFS are also decreasing as it is shown in Table 3.3.6. However,
this is also obvious since the discriminatory power of the CB is not
expected to be as good as the discriminatory power of the
corresponding main biometric modalities. The matching score of the
used CB is nearly one third of the main matching score, as shown in
Table 3.3.1. Additionally, the weights of the CB are adjusted in a way
that they are in relation to the main biometric modalities. This way the
SFSF, EFS and PEFS concepts still provide a more or less good result
allowing a decision to be done on. The ADF concept would have
rejected any person. The best result is still given by the PEFS.

The following theoretical evaluation we performed considers the worst
case scenario, which is a potential simultaneous failure of all primary
sensors. In this case none of the main biometric modalities could be
used. ADF and SFSF would result in a fused matching score of 0. The
EFS and PEFS would use the additional soft biometric modalities
(CB). The resulting score is visualized in Table 3.3.7.

The fused matching score should be the average (0.2) of the
different MS_CBj,0 as all are included with the same weight W_CBj.
Compared to ADF and SFSF this still has advantages: even if the
main biometric modalities fail, subsystems that use authentications
can still perform. As the discriminatory power is probably massively
decreased, systems which are mainly related to the security domain
will eventually do not grant access to their functionality, but comfort
related applications still might provide the requested services. Also
in this scenario the PEFS give the best result for comfort related
applications.

Table 3.3.7 Third Assumption (Failure of all Main Biometrics):

EFS and PEFS Results

Sensor cam micro body

weight

MBUj,0 main biometric usage 0 0 0

1-MBUj,0 compensational biometric

usage

1 1 1

WN0 used weights normalization 3.03

MSfus,0 fused matching score 0.1 0.03 0.07 sum: 0.2

HVfus,0 fused verification hash codes 0.33 0 0 sum: 0.33

Table 3.3.8 shows the impact of the application operands Aj,0

regarding scenario 2 in section 3.3 using the basic data from Table
3.3.1 and a modified V1,0 of 0.5. As the classification (level) of the
desired movie increases, the application lowers the influence of the
respective modality (here: face), also including its compensational
biometric.

Table 3.3.8 Impact of Application Operands

(EFS & PEFS)

Sensor cam micro body weight

MBUj,0 main

biometric usage
0.5 1 1

1-MBUj,0
compensational

biometric usage

0.5 1 1

WN0 used weights

normalization
1.242

Aj,0 application

operand (level 0)
1 1 1

MSfus,0 fused

matching score
0.3 0.313 0.07 sum: 0.683

HVfus,0 fused

verification hash codes
0.379 0.447 0 sum: 0.826

Aj,0 application

operand (level 1)
0.5 1 1

MSfus,0 fused

matching score
0.15 0.313 0.07 sum: 0.533

HVfus,0 fused

verification hash codes
0.19 0.447 0 sum: 0.637

Aj,0 application

operand (level 2)
0 1 1

MSfus,0 fused

matching score
0 0.313 0.07 sum: 0.383

HVfus,0 fused

verification hash codes
0 0.447 0 sum: 0.447

In this scenario the application operand Aj,0 is useful for purposes
like improving the access protection: Because of disturbing lighting
conditions, a child trying to start a movie of level 2 might
accidentally be recognized as a person registered for this level even
while the Vj,0 includes information regarding the environment. The
Aj,0 additionally lowers the matching score even more, so that the
child finally is rejected, anyway. However, this can also decrease the
comfort because persons of level 2 could also be rejected this way.

3.4 Security and Comfort Aspects
In this section we give some comments what effects the discussed
approaches can have on security and comfort. As it was shown in
Tables 3.3.2 to 3.3.4, the different approaches (ADF, SFSF, EFS
and PEFS) give nearly the same fused matching score if the system
is working at its optimal state with a confidence and functionality
factors of 1 for all sensors. In that state neither an improvement nor
degradation can be recognized. The original concept was intended to
enforce the security by neglecting the comfort. There is no fall-back
solution to use the system in any failure case. This has some
advantage in case of attacks: An invader might try to fool the system
by deactivating a certain sensor. If a binary operator corresponding
to this sensor forces the final matching score to zero, the system will
not provide any functionality to him.

The Simplified Face Speech Fusion offers a good chance to
compensate the failure of sensors. But it does not include explicit
information about environmental changes through additional
sensors as the functionality of the sensors involved is included.

With the Enhanced Fusion Strategy we can achieve a better comfort
compared to the ADF by lowering security. In relation to the SFSF



the EFS includes additional explicit information about the
environment. Furthermore it is possible to give a substitution of
malfunctioning sensors. In the case that also these sensors fail, the
system is not able to authenticate a user; however, the ADF and
SFSF approaches also fail if main biometric sensors fail.

4. Summary and Future Work
The proposed modification of the Adaptive Dynamic Fusion
includes the possibility of the Simplified Face Speech Fusion to also
use information about the current functionality of each sensor. By
the inclusion of additional soft biometric modalities from additional
sensors, the calculation has been improved. By the use of such
compensational biometrics, the system is now able to still provide a
(decreased) matching score if main biometric modalities fail. This
way, systems which are mainly related to the comfort domain could
still provide user dependent functions.

For this paper, we used an exemplary assignment of three chosen
compensational biometrics to the main biometrics. As future work,
the influence of the choice of different compensational biometrics as
well as their assignment to the main biometrics will have to be
investigated closer.

Beyond our suggested new fusion model on matching score level,
the selection of an appropriate threshold remains an important
question. Future work will study adaptive thresholding techniques
under consideration of actual confidence factors and availability of
sensors in specific security and comfort requirements.

With respect to the features of the fusion strategies, further options
could be considered in future. One potential enhancement could be
to only respect a reduced number of input modalities when
applicable. For example, in certain scenarios a reduced set of
biometric modalities might be chosen that leads to reduction of
power consumption at the cost of a less dependable classification.
Such a setup might be sufficient for scenarios without important
security requirements. Biometric modalities giving a strong
classification but also lead to high power consumption could
especially be used for high secure scenarios. For such purposes, a
classification of the biometric modalities useable for different
scenarios in the automotive domain would be helpful. We also
consider to allow an application to additionally decide whether or
not the compensational biometric modalities may be used. In case
the application does not permit the use of CB, the system will only
use the main biometric modalities for the affected calculation, which
might then be based on input data of bad quality or from failing
sensors.

Based on our first theoretical evaluation presented in this paper we
are also planning to calculate fused matching scores for all four
concepts on real data. Test data will be collected in a laboratory
environment within optimal conditions and under different real-life
conditions in vehicles (such as noise or different acoustic and light
situations).
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